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Abstract - In the introduction we show that the inverse problems for transport equations are naturally
reduced to the Cauchy problem for the so called A-analytic functions, and hence the solution is given
in terms of operator analog of the Cauchy transform. In section 1 we develop elements of the theory of
A-analytic functions and obtain stability estimates for our Cauchy transform. In section 2 we discuss
numerical aspects of this transformation. In section 3 we apply this algorithm to the 3-dimensional in-
verse kinematic problem with local data on the Earth surface, using modified Newton method and discuss
numerical examples.

1. INTRODUCTION
Let’s consider a 2D stationary transport equation:

Pu = (w,Veu(z,a)) + ple)u(z,a) = a(z), € Q, a €R,

where w = (cos a, sin ), u(z,a) — a 2m-periodic function, describing the density of particles at a point
z, moving in a direction w, u(z) — a function, defining the attenuation at a point z, a(z) — the radiation
source. This problem is considered in a strictly convex domain  with a smooth boundary. If z € 99,
then one can measure the incoming and outgoing flow of particles.

f-(z,w), (w,v) <0
f+(a:,w), (w,u) > Oa

u(x,w) - = f(at,w) = {

where f is a 27-periodic function, f- — the incoming (into the domain §2) particle flow, fi — the
outgoing (from Q) particle flow, v — the outer unit normal to the Q, and ¥ = 0Q x [0, 27|, which can be
identified with the torus 9Q x S!, S! = {w € R?; |w| = 1} in a natural way.

The inverse problem consists in determining the right-hand side a from the given trace of u on ¥
and attenuation function p. For the solution of this inverse problem it is useful to rewrite it in complex
variables, assuming that: z = ; + ixs, i> = —1, u(z, @) = u(z,a), f(z,a) = f(z,a), p(z) = p(z). Then
using Euler’s formulae one gets

ez’apu — —511, + e?iaau + ei"‘uu — eiaa,
where the formal derivatives 0 = a% and 0 = % are defined in the usual way:

ﬁ_@l—zﬁg 5_2_81+i82
0z 2 7 '

oz 2
The expansion of the function u into the Fourier series has the form:

u(z,a) = Z upe” e,

neZ

0=

Here u,, = U_pn, where U, are the usual Fourier coefficients.
Since the function w is real-valued, one gets u, = —, and hence, setting u = (ug, u1, uz, - ..) € 12(0,0)
and introducing the shift operator U,

U : (ug,u1,u2,...) — (0,ug,ur, us, - ..),
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and its adjoint in I5(0, 00), one can rewrite this inverse problem as the Cauchy problem

dau+pU*u=0 in Q,
‘ _ 1)
ul =f,
o0
where A = —(U*)?, and 4 = 0 — A is a Beltrami-type operator with the operator coefficient A.
However, in the case under consideration in any of the Hilbert spaces [5(0, 00) with the norm
o
llal2 =3 (1 +n*) uaf®, >0,
n=0

the norm of the operator A exactly equals to 1.

This makes the theory of equation 8 u = 0 more difficult than in the classic case when the norm of
A is less than 1. A solution of the equation d4u = 0 is called an A-analytic function.

We can cancel the term p(z)U*u by change of variables. Putting

u(z) = e?@v(2),

we find that the operators 4 + pU* and 04 are similar, provided that the family of operators ® satisfy
the equation

04® = —p(2)U*, z€Q. 2)
Under this assumption the problem (1) reduces to the problem
0av=0 inQ, )
V‘ = e‘q’u' =e =g 3)
aQ 80

The existence and boundedness of this transformation operator is proved in the paper [1].
The solution to the Cauchy problem (3) can be obtained by the analog of the Cauchy formula for the
operator 94, also derived in [1]:

V() = 5 [ C(C= 2+ AR - [ €(¢ = Bav(OC @
Q Q

_27'('2 )

where ( = (4 +i(2, z = 21 + iz and
— -1
C(z) = (z+74) L =21 <1 + §A>

is the operator analog of the Cauchy kernel. With the help of this formula the solution of the problem
(3) is written in the explicit form:

v(z) = (¢ = 2)(dc + Ad)g(0).

—27” P}

It’s known that C(2) € L(I5T,15) for all s > —1/2, and the operator ®(z) € L(l2) can also be found
from the Cauchy formula (4)

a() = /Q C(¢ - UQU*dC, pe C2(Q).

Combining these formulae, one gets the final formula for restoration of the function a :

a(z) = 2Re{(u1). } + p(2)uo(2), (5)
where
um(z) = (u(2),en), m=0,1,..., (6)
enm =(0,...,0,1,0,...,0), {-,-) is a scalar product in l5(0, c0), and
N
u() = o= [ €¢I O (dC + ADE(C). )

271 80
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Notice that the operator ®(z) is defined non-umiquely, in particular ®(z) + ®o(z), where &y €
CY(©; L(l2)) and 4% = 0, also satisfies the equation (2).

Formulae (5)—(7) give the solution of the ill-posed inverse problem in terms of the Fourier coefficients
of the initial function f(z,«). Using the Parseval equality, these formulae can be rewritten in terms of
the function f itself.

We see that from abstract point of view our inverse problem (with or without attenuation) is reduced
to the problem of finding the vector (I — A*A)C f, where C is the A-analog of the Cauchy transform. We
shall study the properties of this transform in the next section in more general abstract setting.

We can see that abstract operator formulae lead to unsaturated (see [2], [3] and the remark at the end
of the section 3) and easily implemented algorithms.

2. A-ANALYTIC FUNCTIONS

Let X be a complex Hilbert space and A be a linear bounded operator acting in X. For naturaln = 1,2, ...

we put X, = {u € X, A"u = 0} and Xy = |J X,,. We suppose that linear subspace Xp is dense in X,
n

and for any u € X

|[Aul| < [[ull, (8)
||A"u|| = 0 when n — oco. 9)
For any s € R we put
lJull2 = (1 +n®)*[I(1 — A"4) /2 A%, (10)
n=0

X? is a closure in this norm of the linear space Xg. Similarly, X $:1/2 ig g closure of X in the norm

(o)

llull3,1/2 = D (1+n?)°|| A (11)

n=0
It is easy to check that
XO=XcCcX Y ifs>1/2
and
Xt/ = X912 if 5> —1/2.

These properties explain our notations.

Remark 1.1 If we change operator A to operator aA where « is a unit complex number, then
norms (10)—(11) will remain the same. Since under a conformal map f the operator 04 goes (up to a

nonzero factor 7’(2)) to Oua with |a| = 1, we can say that these scales are conformally invariant. The
following example is typical for our applications.

Example 1.2 Let X = I5((0,00);Y) be the space of sequences u = (uo,u1,us, . ..), whose values
lie in an auxiliary Hilbert space Y,
o0
llull = Y lunl®,
n=0

where | - | is a norm in Y. Operator A is a left shift
Au = (ul,u2, N )

Then X°® = 15((0,00);Y) with norm

o0

llull = (1 +n®)°|un|*.

n=0

For this example it is easy to check that if we replace the operator A with the operator A" the norms in our

new scales will be equivalent to the norms given by (10) and (11). Operator (I — A*A) = (I — A*A)Y/? s

the orthogonal projector on the space (Y, 0,0, ...) which we identify with Y. Similarly (- (A*)"A"™) is the

orthogonal projector on space (Y,Y,...,Y,0,0,.. .) which we identify with Y. Let R(\, 4) = (A — A)~*
e e’

n times
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be the resolvent of our operator A. Conditions (8) and (9) yield that R(), A) is a bounded operator in
X for |A| > 1 and is in general unbounded for [A| = 1. Next theorem shows that R(\ A) € L(X5H, X?)
on the unit circle S = {\ € C,|\| = 1}.

Theorem 1.3  For all A € S and for s > —1/2 the following estimate holds

c(s)
1RO Al < s lllssa,

where c(s) is a finite constant for all s > —1/2.

Let us now study the properties R(), A) as an operator-valued function on the unit circle S, puting
X = e, If f(y) is a 27m-periodic smooth function with vector or operator values, the Weyl’s derivatives
% are given by formula

$f = (£in)*fae™, a>0. (12)

Here [, is the Fourier coefficient of function f and (in)* = |n|*es®n(Ma™i/2 Formula (12) will be true
also for a < 0, if R

fO = Oa (13)

and we have Dz*Dg = I — is the identity operator for @ > 0 and also for a < 0 on the subspace (13).
We also have the following integration by parts formula:

27
[Pruonerde = [u@nm oo
0

0

Here u is an operator-valued function. Using these formulae it is easy to prove

Theorem 1.4  For all v € X the following estimates hold
D% Rull < ¢()llul], o >1,

1Dy Rull?,(s.x) < C(2a)[[ul]?, a>1/2.

Here () is the Riemann’s zeta function. As a corollary we obtain
D7 *(Ru) € H*(S; X), a>1/2

and by Sobolev embedding theorem D7 * """ (Ru) € C™(S; X), a > 1/2. Here H* is the Sobolev space
with values in X.

Let © be an open set in the complex plane C. As in the introduction we say that function u(z) with
vector or operator values is A-analytic in Q iff dau = (8 — A0)u = 0 for all 2 € Q. Now we would like
to describe the main a priori estimates and identities from which it is easy to obtain correctness for the
corresponding boundary value problems for operator 4. To do this we suppose for simplicity that Q is
a simply connected bounded domain with smooth boundary 9Q = {z = z(s),s € [0,1]}, where s is the
natural parameter and [ is the length of Q. On the space of l-periodic functions on 62 we introduce the
Hilbert transform  (which just multiplies each n-th Fourier coefficient by —i-sign(n)) and a self-adjoint

non-negative operator
1, d

A= —H—.
27 ds

We put

Theorem 1.5
(i) If u is A-analytic in Q and u, € H/2(09; X) then the following identity holds:

2|[(1 - A*A)1/26U||2L2(Q;X) + A 2u_|[7, pa.x) = |1A1/2U+||342(an;x>- (14)
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(i) If u is A-analytic and for some real s > —1/2, uy € HY/?(98; X*1/2) then the following identity
holds: . ,
2“6““22\&:;)@ + HAl/QU—||2Lg(ag;xs,l/2) = |!A1/2U+H2L,_,\5Q;Xs,1/2)~

If we introduce an A-analog of the Cauchy transform

2
o0

CH)e) = o= / va(C - 274 F(Q)ds,

where v is a unit outward normal (to Q) in complex form v = v; + v, and v4 = v — AV, we obtain from
Theorem 1.5 the following

Theorem 1.6  The following estimates hold:

(I = A2 llmy, ) < cllfllmreoex), (15)

Q;x) —

HCf”Hl(Q;Xs) < C(S)”f||H1/2(BQ;X511/2) for all s> —1/2.

Formulae (14) and (15) show the stability of the inversion of the Radon transform based on the
A-analog of the Cauchy transformation.

3. CAUCHY FORMULA IN POLAR COORDINATES; ESTIMATION OF THE
CONVERGENCE SPEED OF THE PROJECTION METHOD
In this section we will rewrite the Cauchy formula (7) in polar coordinates and will estimate the error
that occurs after the Fourier coefficients with indices > 2N +1 are discarded. For simplicity we’ll consider
the case p = 0. Then

a(z) = 2Re(u1):, (16)

() = = [ €(C - 2)dC + AdDE(Q). (17)

- 21 80

So, let  be a convex domain with a smooth boundary, z € Q, ¢ € 9. Let’s switch to the polar coordinate
system with the centre at the point z (see Figure 1),

Figure 1: Polar coordinate system with the centre at the point z.

¢ =2+ plp,2)e, p>0.

Then, using identities

(I+e 2% A)7" 2idp + X

=
{—=z
1 _

— (I +e ¥°A) e A2idp + Zg_%

(I+e 2% A)7" (¢ —2)7" (d¢ + AdQ) = {

the Cauchy formula (17) can be written in two forms:

1 [ —2i0 A\ = 1 £(¢)dC
u(z):;/o (I+e7%A) lfd‘p+% a0 €(C—)z<

; (18)
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6
LT o L[ RO
- _ = i i - ) 19
u(z) 7r/0 (T+e 4) e Afd(p+27ri o0 (=% (19)
We have ac i .
P
—— 4+ == =2—dop,
(—z (—=z p v

whence, adding together formulae (18), (19) and dividing the result by 2, we get

1

u(z) = o

on ' . ] 1 2m ,0,
/ (42 4) ™" (I — e 20 4) £(Q)dip + —— / £. 2 qp.
0 2mi Jo P
In particular, if Q is a circle with the centre at the point z, then p;, = 0 and we get a mean-value theorem

2w
u(z) = 51;/0 (I+ e=29 A) T (I — e %% A) fdp.

For finding the function a by the formula (16), it’s convenient to use the formula (18), as in this case the
second term vanishes under the action of the operator 9:

2m
du(z) = o / (I+e72%4) 7 £(C(=,9))dy. (20)
0
Recalling, that A = —(U*)?, we get
(I + e——-2igoA)—1 — Z e-—Zni(p(U*)2n'

Since ((U*)?"f,e1) = (f,U?"e1) = (f, e2n11) = fons1, wheree; = (0,1,0,...,0), (-, -) is a scalar product
in 15(0, 00), from (16), (20) we get

1 2m o0 . .
a(z) = 2Red— / E e o0 (z + p(z, go)e“")dcp
m™Jo n=0 Y
C(z,0)
or, performing the differentiation under the integral sign,

o

ofs) = 2me]. [ TS e (0
- 7 Jo — 2n+1 z p.

Put
1 2m N-1 .
an(a) =2Re [ gL (O (21)
0 n=0
and let € C Q be a compact subdomain in Q. Then, if 8Q € C*, then |¢!| < const Vz € Q' and
1 1
lla=anllo@ = 0OV ~*FE) Vs> (22)

when N — oo, if f € 13(0, 00) uniformly in ¢ € 9Q. So, smoother initial data f you have, less Fourier
coefficients are required for reconstructing the function a with the prescribed accuracy. The estimate
(22) also shows, that the projection method (21) bears unsaturated character (see [2], [3]).

4. LOCAL 3D INVERSE KINEMATIC PROBLEM ON REFRACTED RAYS
Let’s consider a half-space in 3D and let

20 = (29, 23) = r(cosa, sina),

2" = (z},}) = r(cos §,sin ),

where a, 8 € [0,27), r € (0, p], are two arbitrary points on the circle |z| = r in the (z1, z2)-plane.
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Let I' = I‘(n a, ﬂ, r) = I['(z°,z') be a ray, corresponding to the slowness n(a:, z), that passes through

the points z° and z'. We assume that for any pair of two points, z° and z!, satisfying [2°| = |z!| = r,
r € (0, p], there ex1sts only one ray I'(z°, 2') connecting them. Suppose that we know the travel time

(o, B,71) = / nds := F(n), (23)
I'(n;a,B,r)

and would like to find the slowness n. At the first step we reduce this nonlinear integral equation to a
sequence of linear equations using the modified Newton’s method. To this end, note that

/ (n+h)ds—/nds

F(n+h) — F(n)

I'(n+h) I'(n)
= / [(n+h) —n]ds + / nds — nds = / hds = F'(n)h,
I'(n+h) T'(n+h) T'(n) T'(n)

~"

o(h) by Fermat’s principle

where we use the abbreviation I'(n; a, 8,7) = I'(n). Recall that the Fermat principle states that the travel
time along the ray is stationary with respect to the small perturbations in the ray trajectory. After we
rewrite the equation (23), F((n) = 7, in the form

F(n)EF(n0+u)—F(no)+F(n0):T,
- ——

~F'(no)u 7o

we get
F'(no)u =7 — F(no) := g(a, B,7) (24)

and .
u = [F’(Tlo)]_ (T-—F(no)).

Note that this is a standard linearization. Now we use the modified Newton iteration method

T =F(n)

F(ng + (n —ng)) — F(ng) + F(ng)

X

F'(ng)(n — ng) + F(ng) = F'(ng)(n — ng) + F(ng),
~F' (no)

and hence for the next iteration ng41 := n we have
~1
Ng4+1 = Ng — [F'(no)] (F(nk) - 7')-

On the next step we choose mg = 7n9(z) so that the calculation of [F ’(no)]_1 would lead to the
sequence of usual 2D Radon transform inversions in the discs |z < 7, 7 € (0,p]. In the case no = no(2)
it is easy to see that ['(ng) is determined by the system of equations

Y41 ::(fl},l/)—h = Oa
po =z —¢(z[,r) = 0,

or p(z,z) = 0 in short, where we let p = (p1,p2). For the linear velocity Vo = m + bz we have ng =

(m +bz)~! and
my 2 m
— ]2 N 2 T
p= r+(b) |z| =

Foou= [ uds= [ IVals(e)ute,2)dsdz (25)
['(nosa,B,7)

Also
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where &(p) = 6(p1)d(p2) is a Dirac delta-function concentrated on the curve p = 0, where we need to
calculate Vp;. Here we used the usual formula

udo

/ 5(p(a))u(z)dz = i

p=

where do is a surface element. In general, p(z) = (p1(2),p2(),...,pe(2)), k <n, z € R*, u € Cg°(R")

and
va‘ = V det(Vpqu]>,

(-,-) is the scalar product in R" and Vp; should be linearly independent. In the case of linear sound
velocity we have

2 2 ;2 h?

and so from (25) we conclude that

F'(ng)u = / uda:/le[é(p)u(a:,z)dxdz :/{Vp!é(pl)é(pg)u(:r,z)d:vdz
I'(no:e,3,7)
= [ (e i((a.) = Wtz ellal. e = (o, 8.7), (26)

with g(a, 8,7) as defined in (24).
In order to obtain an inversion formula for (26), F'(ng)u = g, expressed through the inversion formula
of the Radon transform, it is necessary that the weight w(z, h) allows the factorization

w(z, h) = w; (|z]) x wa(h?),

which takes place if and only if
no(z) = (m + bz) ™!

(see [6]).

Figure 2: (a) A set of measurements for a given number of knots on the circle (which comprises the rays that join
all possible pairs of knots). (b) By measuring the kinematic data on a number of concentric circles it’s possible
to reconstruct the slowness in the 3D volume.

We are primarily interested in the case of a linear sound velocity, where ng(z) = (m + bz)~!, b > 0,
and

G b

e

So, using (26), the solution u(z, z) is given by the inversion formula

u(z,2) = \/?“2 * (’?)2 = a2 x R7 . : (27)

V() - h2
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where R~ is the 2D inverse Radon transform. We determine the unknown function u from the inversion
formula (27) in a disc z? + 23 < r?, thus getting the sought-for refractive index (or slowness) n;(z,z) =
no(z) + u(z, z) on the surface of a spherical segment, supported by a circle z? + 22 = r?, see Figure 2.

Numerical results show that the second iteration of a nonlinear algorithm can be better than the
linearized approximation (see Figure 3). On each iteration we determine the slowness on the set of points
on several spherical layers, and then smoothly interpolate it using radial basic functions in the half-space.
It is required for ray tracing when solving the direct problem on next iteration. Algorithm also shows
good results in the case of non-regular metrics (as on the Figure 4).

spherical
section

iter. 1 N 18.2%
reconstructio - . relative error

unknown
slowness

(@

12.02% iter. 3
relative error reconstruction

11.83%

reconstruction relative error

Figure 3: Examples of reconstruction after several iterations. (a) Original small additive of the slowness u, which
is the difference between the original unknown slowness n and the background known slowness no = (m + bz)™*
is shown in a spherical section. (b) Its reconstruction from 128 projections after 1 iteration. (c) Reconstruction
after 2 iterations. (d) Reconstruction after 3 iterations. The Lo-norm of a small additive u constitutes only 2% of
the background slowness ng, so we got a good reconstruction already after 1 iteration. But it refines on successive
iterations. Relative errors were computed in the Lz-norm.

5. CONCLUSIONS AND REMARKS

In the introduction we reminded a known complex interpretation of inverse problems for transport equa-
tion (see [1]and references given there). The purpose of sections 2-3 was to show that the inversion of the
Radon (or generalized Radon transform) in terms of the A-analog of the Cauchy transform is not only
elegant but also leads to very simple and stable algorithms. In order to demonstrate this in section 4 we
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Figure 4: Examples of nonregular media. s denotes a source point. (a) Two different geodesics (shown in
bold-faced type) join the same pair of points. (b) Three different geodesics (shown in bold-faced type) join the
same pair of points.

chose a sufficiently complicated 3D inverse kinematic problem with local data, which was first suggested
and solved in linear approximation in [6]. In the full generality it was considered in [4], [5].

Definition of the unsaturated algorithms was introduced in [2]. About another approaches to inversion
of the Radon transform and their generalizations, see [7] and [8], [9], [10] and references given there.
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